The transcription factor ZBP-89 controls generation of the hematopoietic lineage in zebrafish and mouse embryonic stem cells.

نویسندگان

  • Xiangen Li
  • Jing-Wei Xiong
  • C Simon Shelley
  • Heiyoung Park
  • M Amin Arnaout
چکیده

Hematopoietic development is closely linked to that of blood vessels and the two processes are regulated in large part by transcription factors that control cell fate decisions and cellular differentiation. Both blood and blood vessels derive from a common progenitor, termed the hemangioblast, but the factor(s) specifying the development and differentiation of this stem cell population into the hematopoietic and vascular lineages remain ill defined. Here, we report that knockdown of the Krüppel-like transcription factor ZBP-89 in zebrafish embryos results in a bloodless phenotype, caused by disruption of both primitive and definitive hematopoiesis, while leaving primary blood vessel formation intact. Injection of ZBP-89 mRNA into cloche zebrafish embryos, which lack both the hematopoietic and endothelial lineages, rescues hematopoiesis but not vasculogenesis. Injection of mRNA for Stem Cell Leukemia (SCL), a transcription factor that directs hemangioblast development into blood cell precursors, rescues the bloodless phenotype in ZBP-89 zebrafish morphants. Forced expression of ZBP-89 induces the expansion of hematopoietic progenitors in wild-type zebrafish and in mouse embryonic stem cell cultures but inhibits angiogenesis in vivo and in vitro. These findings establish a unique regulatory role for ZBP-89, positioned at the interface between early blood and blood vessel development.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Stress hematopoiesis is regulated by the Krüppel-like transcription factor ZBP-89.

Previous studies have shown that ZBP-89 (Zfp148) plays a critical role in erythroid lineage development, with its loss at the embryonic stage causing lethal anemia and thrombocytopenia. Its role in adult hematopoiesis has not been described. We now show that conditional deletion of ZBP-89 in adult mouse hematopoietic stem/progenitor cells (HSPC) causes anemia and thrombocytopenia that are trans...

متن کامل

I-11: Dedifferentiation of Mouse Fibroblast Cells by Chemical Induction

Induced pluripotent stem cells (iPSCs) generated by ectopic expression of four transcription factors have great promises for regenerative medicine in humans. Since the initial report of iPSCs by viral transfection, ample efforts have been made in the generation of iPSCs through nonviral approaches. Small molecules offer the advantages of low cost without genomic modification and have been used ...

متن کامل

Differentiation of Mouse Embryonic Stem Cells into Hematopoietic Cells

Purpose: Differentiation of Mouse embryonicstem cells into Hematopoietic cells. Materials and Methods: In this study, we used EB formation system for Hematopoietic differentiation of mouse embryonic stem cell (Royan B1) in suspension culture. EBs cultured in medium with Hematopoietic inducer cytokines (SCF, TPO, GMCSF, IL3, Flt3 and EPO) .presence of hematopoietic differentiated cell assessed ...

متن کامل

Pancreatic Differentiation of Sox 17 Knock-in Mouse Embryonic Stem Cells in Vitro

The way to overcome current limitations in the generation of glucose-responsive insulin-producing cells is selective enrichment of the number of definitive endoderm (DE) progenitor cells. Sox17 is the marker of mesendoderm and definitive endoderm. The aim of the present research was to study the potential of Sox17 knock-in CGR8 mouse embryonic stem (ES) cells to differentiate into insulin produ...

متن کامل

CFU-GM Like Colonies Derived from Embryonic Stem Cells Cultured on the Bone Marrow Stromal Cells

The aim of this study was to isolate mouse embryonic stem cells from late blastocyst stage embryos and to use them as a model system for the study of hematopoietic induction outside the embryo by coculturing of embryonic stem cells with bone marrow stromal cells. Blastocyst stage embryos from pregnant NMRI mice were obtained and cultured for 1-2 days in DMEM medium. The inner cell masses formed...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Development

دوره 133 18  شماره 

صفحات  -

تاریخ انتشار 2006